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A shallow circular cylindrical shell with closely spaced stringer-
and ring-stiffeners is considered. Equilibrium equations are de-
rived on the basis of assumed states of stress in the monocoque
cylinder and stiffeners through superposition and smearing-out

of the stiffening effects. Inertia terms of such an equivalent
shell are incorporated and coupled equations of motion are stated
in linear and nonlinear form. Partial decoupling of the radial
displacement equation is shown to be possible for the orthotropic
shell (zero eccentricity). On neglecting tangential inertia effects
the equations of motion are formulated through the use of a stress
function which results in a system of two nonlinear partial diffe-
rential equations in the radial displacements and the stress function.
Since some of these equations have not appeared in the open
literature an effort has been made to check them by reduction to
well-known expressions for the orthotropic and isotropic shell.
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1. INTRODUCTION

The dynamic stability of monocoque and stiffened cylindrical
shells is the topic presently under investigation at the
Applied Mechanice lLaboratory of Syracuse University.

This interim report covers the initial activity of the writer
in formulating the pertinent equations. It is therefore not the
purpose to arrive at a preset goal, but rather to report an
initial stage of de#elopment leading to the dynamic response.

2. SCOPE

Differential equations of motion in linear and nonlinear form are
derived for eccentrically stiffened shells. The stiffeners are
assumed to be closely spaced and consist of stringers and rings
equally spaced in the longitudinal and circumferential direction,
respectively.

3. ACCOMPLISHMENTS

A simpified linearly elastic stress-strain distribution is assumed
in the monocoque shell and the stiffened part from which the

stress resultants, bending- and twisting moments are derived in
terms of strains and curvature changes. The additive stiffness
provided by the stringers and rings is assumed to be "smeared-out"
over the shell which is justifiable for stiffener spacings that are
small with respect to the half-wavelength of the buckling pattern.
The stress-, moment-and twist resultants are given in matrix form
in termes of strains and curvature changes. It is shown that when
linear strain-displacement relations are used these equations become
identical with those of reference (1). On using nonlinear strain-
displacement relations the equations of reference (2) are obtained.
In these two references the principle of stationary total potential
is employed in which the stress-, moment and twist resultants are
inherently defined and the equations of equilibrium and boundary
conditions follow from Euler's variational equations. The equi-
librium equations used in this paper accomodate components of the




membrane forces in the radial direction and also include inertia
forces. The equations of motion follow through the introduction
of the displacements and their space and time derivatives. When
these equations are linearized and reduced to the isotropic shell,
Fliigge's shallow shell equations of motion of reference (3)
result.

An attempt is made for the linear case to obtain an equation
of motion in the radial displacement w alone,while accounting for
tangential plane inertia terms. This partial decoupling is achieved

only for the orthotropic case since the eccentricity of the stiffeners

upsets the symmetry requirement of the decoupling procedure. A re-
duction to the isotropic case checks with the equation obtained in
reference (5).

Nonlinear equations of motion are derived on the basis of
a stress function f(x,y) when tangential inertias are neglected.
This method reduces the problem to the solution of two coupled
fourth order nonlinear partial differential equations in f and w
which is analogous to the von Karman large deflection equations for
the flat plate under static conditions.

4. THE STRESS RESULTANTS, MOMENTS AND T¥ISTS FOR THE SHALLOW

MONOCOQUE CYLINDRICAL SHELL

The plane stress-strain relations of the engineering theory of
elasticity are assumed to be valid, e.g.

&; _-,7:5.".3 (&5 +¥ &r)
6:7::-/-%—2-(8(77 "'Pfxr) ()

where the subscript T on the strains relatea to the total strain
at any height in the thickness direction.



A thin shallow cylindrical shell of thickness t and middle surface
radius R is assumed (t/R<<1).
With the notation shown below the stress resultants, shear forces,

moments and twists are

defined as:
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where the superscript

(m) stands for momocoque.




The assumption,that cross-sections normal to the middle surface
remain normal to it after deformation,leads to the following
relation between the total- and middle surface strains:

Exr = & —}226,(
Ear = 5‘7 "'ix; (3)

far = iy - szv

where  Jx, 2(; and #x

are the changes in curvature and twist of
the middle surface.

Introducing (3) into(1l) and then into (2) and integrating over the
thickness leads to:
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In the sequel the following abbreviations will be used:
( A summary of all abbreviated parameters is given in the

J
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Appendix)
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With (5) equations (4) can be written as:
Nx(m, = kfx + ky EJ
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or in matrix form:
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5. THE STRESS RESULTANTS, MOMENTS AND TWISTS FOR THE
SHALLOW _STIFFENED SHELL

It is assumed that the stringers and rings can be treated as
beams with zero Poisson ratio. The normal stresses are assumed

zero for the stringers in the y-direction and for the rings in
the x-direction.

- E%’E& - 5;1341; (8)

= ER{)-E;&Z,

Where S and R stand for stringer and ring, respectively.



a) The Contribution of Stringers and Rings to the Stress Resultants

Integrating (8) over stringer- and ring cross-section, respectively,
(denoted by Ag and AR), we note that the strains and curvature
changes can be treated as constants if their variation is small

in the neighborhood of the cross-sectional areas.

Summing forces in the x-direction, .contributed by the stringer,

we can write, 4

F o= E A& -Esac,,/edAffsAsfx*@/?s%"‘x

As
where ié is the centroidal distance of ‘S from the middle surface.
If thias contribhution is emeared aswver the stringer spacing 4, we

obtain a stress resultant N (S) per unit circumference contributed
by the stringer, e.g.

3 -
N, = %.4-‘ £, - %4_5.& (3)

Identical considerations apply to the ring cross-section with the
result:

N o _ Lol £ - EeAe 2¢ (/0)
J ¢ 7 €
where £ is the ring spacing.

The contribution of the ring and stringer cross-sections to the
shear stress resultant are assumed to be negligibly small.

b) The Contribution of Stringers and Rings to the Moments and Twists.

Taking moments of the forces due to the stresses of equations (8)
about the local coordinate axes of the middle surface results in:

=/(Ess, B e 2’) A = Eshls s &= b o %y
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where lgo =~}(zzd¢k, is the area moment of inertia of the stringer

cross-sectioéhwith respect to the local y-axis of the middle surface.

Smearing out this moment contribution over the stringer spacing d,
we obtain:

(s)  E5As 2, £ I
Mo = _%45__5 £ - -:{ sox, (1
Similarly,there results for the ring,

B  Ghetng _ Eply ‘
- g - ety

Twisting of the rings and stringers occurs due to the twisting
curvature changeJGQ.of the middle surface. The assumption that plane
cross-section remain plane and normal to the middle surface is dis-
carded for the stringers and rings under twisting. If the latter
consist of tubular cross-sections they provide considerably to the
twisting rigidity in comparison with. the monocoque shell. For
simplicity it is assumed that the effect of any possible joint of the
stiffening elements can be ignored and the latter can warp freely.
Sincel'xo, is the twist per unit length the contribution of the stringer
to the twisting torque is,

(s)
K~ = GsJs Xxy

where'Js is the torsion constant for the stringer cross-section.

Smearing-out the twisting torque over the stringer spacing a
we obtain,

ST

//,] = Xy (13)

In analogy, there is a contribution from the ring,

R Ge Jp
”a‘ = - -2--- xxy {/‘b‘)



c) The Total Effect of Stiffeners and Monocogque Shell

By superposing corresponding quantities <from equations (4),(8),(10),

(13) and (14), the following stress resultants, moments and twists
can be written:
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The following additional parameters are defined:
(Included in the 1list of the appendix)

ke = E:IAS )
/(k =E,e/4n
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D¢ = d‘z:"" = 53[1;,_. * 55.2’45_7 )
D, = Lrdeo . LR [r. 4 3,24
g = ? Y RC 4 /?] > (/6)
_ 6. Js
Dys = -
Dge= S2lr J
4

where Isc and IRc are the area moments of inertia with respect to
parallel axes through the centroids of stringer and ring cross-
sections,

FSb and PRb are algebraic quantities and they are positive in
our notation for external stringers and rings.

When stringer and ring croess-sections are symmetrical with re-~
spect to the middle surface the eccentricities Es and Eﬁ are
zero and therefore, Sb FRb‘ 0. In this case there are only

12 stiffness-rigidity quantities and we speak of an orthotropic
shell which corresponds to that of reference (4).

Considering equations (lS),certain parameters can be grouped
together and it is convenient to introduce certain combined stiffness
-rigidity parameters which are defined as follows:

( Also listed in the Appendix)

_ Bt EA )
Kys = Ktk =55 + =
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/2(/ p’)
Z
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4
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With these abbreviations equations (15) become:

Ny = Kius & + K €y ~Fsp Xx
Ny = K & + Kiug & = Tab %
ey = Nye = Ke iy

M, = Ksp & = Ous e =00 %

‘;t'
]

ﬁ&x ="Z)HGR 2527

——

(18)

It must be noted that the twisting moments Hx and M x 8Te not
of equal magnitude. In order to casti equations (18) into a matrix,

let us define:

d

’_'; i 2‘- (Hx] i ”;x} _ (Dé - DGSZ*DGR)J&J = D, &‘7 (/3).

nxy can be interpreted physically as an average twisting moment
by which the differences of torsional stiffness of stringers
and

nd ringe is averaged out such that the magnitude of ﬂiy and E&x

are equal,

Equations (18) can be written in matrix form as:
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(N, ) Kis K, 0 ~Fp 0 0 (€ )
N, K Kie 0 -Fp 0 0 &

J N(: \ = 0 0 ks o0 o0 O ﬁ %y ? (20)
My e 0 O Dy D 0 Hy
H7 0 fop 0 =D Do Xy

\l_f}y | o o o o o D | 2y,

6. GEOMETRICALLY LINEAR RELATIONS FOR STRESS KESULTANTS, MOMERTS

AND TWISTS FOR THE ECCENTRICALLY STIFFENED CIRCULAR CYLINDER

It is assumed that the strains, curvature changes‘and twists are
linearly related to the middle surface displacements and their
spatial derivatives in the following manner:

Ex = Uy \

£ = Yy -

fry =Yg * Y > )
He = Hxx

Ly = Myy

l’x(7= foy /

where a comma followed by the subscripted independent variable

denotes partial differentiation with respect to that variable
in the usual manner.

Introducing (21) into (18) resultes in:



M = Kuus U "‘kp(‘ﬁ;*%)'; W, xx )

N; = K, U + Ko (V,J*'—m) Wy

N'(? = Nyx = Ke ('“,; +Vx) |

Mx = Fp Ux ~Dus Wxx = D), 77, f (22)
7o (Vg + &) = O, Wxx = Due W,y

HXJ= Dmss le

hbx=“'£bum'hﬂﬁy | /

It can be shown easily that equations (22) are identical with

those of reference (1) if the proper substitutions are made for
the stiffness and rigidity quantities.

7. GEOMETRICALLY NONLINEAR RELATIONS OF STRESS RESULTANTS,
MOMENTS AKD TWISTS FOR THE ECCENTRICALLY STIFFENED
CIRCULAR CYLINDRICAL SHELL

The influence of a large radial displacement w is taken into
account so that instead of (21) we have,

Ex = Uy *"L/'Vz
= -LW ..‘1_/
£<7 VJ* -

iy = Uy *Vix * Wy H,y

Ay = Wux
% = My
Ky = Mg

Introducing (21) into (18) yields:
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Nx = ’(/Hs(ux*"LW:) *K,(V ,..sz,._&}_};bw,“W

N: = k, (7{,( + I’/,x) 1‘("‘(7 2 ___) eb ’II
NxJ=NJx= 6(“7*'6::*‘”/:( ;,7)

Me = Ts ("'m""zl“"',:)‘oﬁ,s Wxx =D, » W, gy f(ij

": = 7o (Vq *‘i‘”o:v"‘%) ~D, Wxx - Ome W, a7
h&: = LLVGS h‘*)

ng = ~Dise Wiry | J

With the proper substitution for the stiffeness and rigidity
parameters and a slight rearrangementsequations (22) can be shown
to be identical with those of reference (2).

In both, references (1) and (2), the stress resultants,
moments and twists are arrived at through a formulation of the
surface integrals of the strain energy density due to stretching,
twisting and bending. Stress resultants, moments and twists are
then defined as those forces and moments per unit length which
yield the same strain energy density if they act through the
their respective displacements and angles.

EQUILIBRIUM EQUATIONS FOR THE ECCENTRICALLY STIFFENED

SMEARED-OUT SHELL ELEMENT

The equilibrium equations are formulated on the basis of the
notations given in Section 4. Porce equilibrium equations are
written in the x-, y, and z-directions. Radial components of the

membrane forces are taken into account. The following equations
result:

o
o

ﬁvx“( + x,J +'}(

Na,; + N,( )X + Y (29)

|



Ny # Ny )iy + Qux + Qg + 2 =0

where X, Y and Z are forces per unit surface.
Moment equilibrium equations are written about the x- and y-axes
while the equilibrium equation about the z-axis is identically
satisfied with our assumption of a shallow shell.

; Discarding the latter equation, there remain:

H - M

g ’ff (2¢)
”X,X ’,(‘7
On differentiating the first of (26) with respect to y, the second
of (26) with respect to x and introducing the result into (25),
the shear forces can be eliminated. If inertia forces are the only

body forces, we can define an eqivalent mass per unit areaof the
smeared-out equivalent stiffened shell as:

m /ot +f’-‘ +/.:R (27)
where/O refers to the mass per unit volume and the subscripts
are selfexplanatory. Thus the following equations are obtained:

A&ﬁzi-Aény =mu

Ny,y +~NXJ,X= myv (28)
Ny Wy + 2Mag Hixy +Ny Wy - g+ (N + Ny ) x
+ (NM +Nx‘7,x) 7 7“Hx XX +H7x,xJ +%’JJ -/1,?’,(] =mw

where dots indicate differentiation with respect to time.

It must be noted that rotatory inertia terms have been neglected.

They could be of considerable influence if the eccentricities

and the masses of the stiffeners are sizable. This does not
lend itself to be easily included in the above approach, since
besides the stiffener stiffness, the stiffener mass is "gmeared-out"
too.
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9. COUPLED EQUATIONS OF MOTIOR OF THE SMEARED-QUT ECCENTRICALLY

STIFFENED CIRCULAR CYLINDRICAL SHELL

The equactions of motion are obtained when the appropriate deriva-
tives or either the linear set (22) or the nonlinear set (24)

ot equations are introduced into equations (28). Since the third

ot (28) contains products ot the stress resultants (Nx’ Ny, ny)
and its derivatives with w-derivatives, the third equation of
motion becomes nonlinear regardless whether (24) or (28) are

used, unless the secondary effect of the membrane forces is neglec-
ted in (24).

a) Linearized Equations of Motion

The effect of the membrane forces is neglected in the third
equation of the set (28). This set then reduces to:

-

Nx,x + N;x,‘y m
Na"’ + NAJ,K =my (29)
M’(,KX +* H?*ix] - nyng +HJ"J-ZJ =muW

Introducing the appropriate derivatives of (22) and employing
the parameters KP and D2 from (5) and (17) and after some
regrouping the following set of equations can be written:

Kus uxx + Kg Uy + Kp Vpx] + K, %3 ~ Fsp Mxxx = " )
Ko Uy + Ko gy +KeVxe +hog Lo = Tos Wyyy =77 | g

£§30

Fop e = K, %—" * Fes Vary = Rne 29~ Dus W xxxx

- - W, W
20, Wixxyy = D Wyyyy -+ 2 Ty L8t — Ky 2 = 99 W )
The isotropic case for the linear equations of motion of the
monocoque cylindrical shell follows from the above when
the reinforéing parameters are reduced according to the following
scheme:




m — m )
Kns — K
To — ©
Kne — K N (30)
Toe — 0
Dy — D
| Duw — D
o, = b

With (31) the equations of motion of the isotropic shell become,

Kuxy +Kstyy +Kp ¥xy +K, 4x =i
kfu,v»ﬁ/(v,” +K5mxx+k%’d = mV
y _ W _ 0"

(32)

It can be readily verified that equations (32) are identical
with Pliigge's equations of motion of the "complete vibration
theory of a circular cylindrical shell"2 when use ies made of the
assumption of shallowness, e.g.T% (t/R)<< 1. (Reference (3))

b) Complete Nonlinear Equations of Motion

When the complete set (24) is inserted into equations (28) and
use is made of the first two of (28) to simplify the expressions,
the following equations can be written after considerable regrou-

ping :

(33)




/(f u,x, * King Vay T Ks Vixx + Kug 'gw - Fs Wary

 Kiae Wyy My +Ke Wax Wy + Kp Wiy ¥ x =My

KSb Uxxx =~ K, %‘» + s V,‘;ryl = Kir %"’ = DHS W, xxxx
-20, Wyxx gy = Dwe Wyyyy + 2 F/;b LV?u_ Kﬁ(e% f (33)

#Kys ux Wyxx + K, Uyx Wy * 2K Uy Woxy
+Knr Vg Wy + Ky vy ey + 2Kg Vix wxy

2
+ K, Q%éﬂ&x - é?»%%j - é%ﬂ? 2?? +-kbw'Pc:%¥y

2
+ Fsp W,xxx Wx *+ 725 Wyyy Wy

2 1 i 2
+ .A_;’!.S W, xx W,y *A/P(“fnhf;*”l# M’)*'&;ﬁmwhfé’ )
+ 2 Kg Wy MJ Nex‘, =’7’(";‘2:“$x‘qu)

The set (33) is the coupled system of nonlinear partial differential
equations of motion of the eccentrically stiffened circular cylindri-
cal shell. The dashed lines indicate separation of the terms into
groups of the first, second and third degree.

A second degree approximation of (33) can therefore be obtained by
deleting the last terms in the third equation of (33).

lo. ON THE PARTIAL DECOUPLING OF THE w-EQUATION OF MOTION FROM

THE COUPLED LINEAR SYSTEM INCLUDING TANGENTIAL INERTIA

The linearized coupled system of equations of motion (30) is
repeated here for convenience:

Kis Uxx + Ko Uyy + Kp Vg + K, X — Fep Wxax = 1 (34



U v
| T U — K -2 Feb Vayy — Nme & —'Dns W, xxxx

""ZVDZ W,xXa‘y - DHR N’W]] +2 Fﬂjb &Vw k‘,% =7;)h'/‘ (36} i

The following decoupling procedure is followed:

In order to obtain an equation in u and w alone, we partially differ-
entiate (35) with respect to x and y in sequence and then substitute
for the v-terms from (34), which are obtained by separately differ-
entiating (34) twice with respect to x, twice with respect to y

and twice with respect to time.

In order to obtain an equation in v and w alone, (34) is partially
differentiated with respect to x and y in sequence and the u-terms
are then expressed from (35), after the latter ie separately |
differentiated twice with respect to x, y and time.

After considerable manipulation and regrouping the following two
equations are obtained:

z«("ﬂ) + kg %, —%ﬁ-‘#ﬁ/ + Kuue Tsb W, xxxxy s + K K, ﬂ'—e"-"ﬂ A
~Ts4 kG NXK)(KK)( - kHR kp !_'_V_‘_Kw a ;,;6 k‘o MX"JJJ} ?(37)
1 2 [ s+ ten * (fw/(s)uw-% v Ky - Ty ee |

{?V,:) + khs KHR w + kﬂs };b N’“J'JJJ' + KG kng %
- ;/-?b Ke W, 1dISYsYy ‘/(y kp --'-55” * ;‘b /(p XxxxJJ
=™ [(K"R #Ke) Vay *‘“’ns #Ke) Yxxy = 7y, + Kiug 1 ‘54%7:{]

(3:)‘

where the linear Operatoré is defined as:

z '(/Hs /ks QX" * (/Gm"m + kg 2)'—"‘: *kflk &/6%:, (39)



Equation (37) contains only terms in u and w, while (38) relates
v and w.

Multiplying (37) by @and (38) by k,g and adding yields the following
expression:

(K, ux + K Vo) *& [Ke K Wyxxxx + K (K" -2Ke K, *k”’"k’")w""”\’
+ Ke A/me fWH] Foo Ke Ko Wxxxxex + s Kie (kﬂ*/‘}f)w’“””

A’b (kﬁ "‘/(Ir.s A/mz)/'ﬂxx;yjj = R4 /(6 /(me AR 7(90)
,w[fz(/( x+k,,,ev‘7)—'h?°l(k,24x+l7,,?v)+k:£végx
+ kme R -~ K K, Wxxxx = Tr4 kmg NWJJ] )

where the linear operator 4? is defined as:

e ?
(A,”S *kc},}%‘z + (kHR ' o k‘)’a_;-t (#I)

Considering (36) with (40),we would like to eliminate the u and v
terms of (40) with the help of (36).

It can be seen that this is not possible for the eccentrically
stiffened shell. It may however be achieved for the orthotropic
shell. In the latter case, Fop = PRb = 0 in equation (36), and we

" may solve for:

kyuax *‘kHl? "R[Dﬁswxxu *ZDzMxxJJ +0”QWJJJJ*A/'?/?3 *737-1'{] {#2}

When (42) is introduced into equation (40), with Fgp = Fpp = Os

the following partially uncoupled linear partial differential equation
in w results for the orthotropically stiffened cylindrical shell:

»* )((‘( f‘(" +m l)W}—kL,[kskva,xxu '/“kne(&z’zﬁkp 7

+ k@ﬂ ”3) ) XR99 +-k2.k%;.“6;1nt]
7 2L e ) R ]
2 W xx t W
PR 4 K By ]

(43)

e
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Where the linear operator)co is defined&s:

¥ v
'e 0”5 % T + 20 ;3—3;1 *Dﬁk%-; (4‘#)

Equation (43) is called partially decoupled since w must still
satiafy (37) in u and w, as well as (38) in v and w.

(43) can also be reduced to the case of the isotropic shell. With

the appropriate substitutions and after considerable algebra, the
following equation can be obtained:

tt ol J~t =) (1wt 9‘ -u 2 P
T VWS Mo == wﬂ V)( /° 2.
(4

o, tiow ~yo¥ Lt
R *FV"’)* L—VN-I-F W, xx +#1N,”}

Equation (45) is identical with that derived in reference (5).

For the static case, (45) reduces to the well-known linear Donnell
equation of reference (6).

1l. THE NONLINEAR EQUATIONS OF MOTION OF THE ECCENTRICALLY

STIFFENED SHELL IN TERMS OF A STKESS FUNCTION AND
ZERO TANGENTIAL INERTIA

A stress function f(x,y) is defined such that

Nx = £]J
A@,: jexx (#6)
My =F o

With Ue¥=0, the first two equilibrium equations of the system (28)
are identically satisfied. The third of (28) can be written with (46)
and the M's substituted from (24) such that,



-@2e

= (Dys Wixxxx ~ 20, Wxx;y * e Na‘”(;) * 7(” W, xx “27{1(‘7”/4';
’Lf/"x /J;"’fL + % ( xxx T ¥, xx "‘W,X Wxxx)
*‘};b(ajj "‘W/N t Wy ;”77""‘3'7) =m

X

or on using the operator {o by (44)

4
“How f‘” e = 2y Wiy * frox iy = L (+7)
* Fss Choee * M+ W) + Fep(tggy #4130 71 gy 7 20 = 7

The terms in u and v can be eliminated with the help of the first
two equations of (24). In these the N's are expressed by the stiress
function f. After some algebra, the following equations are ' obtained:

[Kf/efxxjj"(/fxxxx +’<71/? £} ,xux ky Rb ’“}]]

u - — .
XXX ‘/Hk“u (1 (98)

£ w

/ ‘
Vcagg = k_"‘—"'—ukm_&g[’kﬁsfxv; }(‘”‘” 7'"«!5 Rb NJ]JJ" v '8b /""/‘7] (‘H)

l W
= Wiy =My Mgy - HY

Substituting (48) and (49) into (47) and combining appropriate
terms, yields the following equation:

K T Tay
‘[(DNS "m@s W, xxxy +2 (0 Kiose Kins - &,) W,xxa,
£ /
* (B ﬁz}“‘@ many] g [ ey (0
- (Kax Fss + Kns Fos) fungy + Ko Tas Fanyy |
# £ xx Wyy 'Zﬁxy Hyxy *f;, Woxx = ﬁkﬁf = " W }
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The nonlinear compatibility equation is taken from reference (7),
page 417, stated for the plate, and is modified for the cylindrical
shell as follows:
{,, + & X x ‘{x X =w: ~Wux W, ;.er 51
S L A A AL " Ay |
The strain terms can be expressed from the first three equations

of (18). Introducing f into the N's,and w's into the X's, they
become:

Kes € + K, &, = Loy * 758 Moax
K" Ex *“’Re f,(x + Rb N’,’ 6.2)

f*a =-% fiy

®olving for the strains and differentiating appropriately,the left
side of (51) can be expressed from (52),which leads to the counter-
part of (50):

[/Grsfnutn +Z (&'5!'—'5—- k‘.)ﬁxv’, fkmp ﬁ(”‘”]
-[kb s Wyxxxx = (Kue By + Kuns o) Wxngy +K, oy ””]?(53)

= by =Hex bgy + | J

The equations (50) and (53) form a nonlinear system of partial
differential equations realating the stress function f and the
radial displacément w for the eccentrically stiffened circular
cylindrical shell. Their relationship is similar to that of the

von Karman egquations for the flat plate.

The bulk of these equations can be reduced by defining the following
parameters: (Also listed in the Appendix)

)

K kns "Q‘

D = _ khﬂ Eéz )
" s k&ak&s“ﬁf
> (5%)

D=Dz—‘ﬁ'f§é—§b—
2 Ko Kags =K ® J



_ ks :
DZZ = Ene Kine Ky -k \
\
S K ’?b
| n S T L
‘ '(’m Kuys ~
S .L kfm Sd_ f'“lé }}
72 Khs =
5 = k“ ;ﬂ
| 2 Kone km L' > ()
A - kHS
/] km@s - k‘pz
Ky

= / -
An = 2k g Kogs - 13,2

__ Kne
An = Kot Kins ~Kp* }

With these abbreviations the two equations can be written as:

D” Mxxx + 2Dy Wwgy + Dy Wy + S frxnex =€ S fiaxyy

(55
z ﬁﬁ(” ‘/gxx 174 *foi ,x; - f;” xx * -%&‘ rmw =0

Ay fxxxx +2 A, ](""J] + Ay, fJJJJ - Sy Wxxxx +25, N'"()'J }(s_‘)
“Saa W gpy = Miny + Whex by -~ X =0

The mathematical formulation of the free vibration of an eccentrically
‘stiffened cylindrical shell is therefore given by the set of

equations {55) and (56) when tangential inertia is neglected., With

an appropriate set of 8 boundary and 2 initial conditions, a solution
should be possible, even though a closed-form solution seems remote



due to mathematical difficulties.

So far then, various equations for the dynamics of eccentri-
cally stiffened circular cylindrical shell have been formulated
through derivation. Immediate future work will concentrate on
methods of solutions for specific problems. In general, solutions
are needed for cases where X=X(t), Y=Y{(t), 2Z=Z(t), besides inertia,
include externally time-varying surface forces for prescribed

boundary conditions, or, on the other hand, prescribed time-varying
boundary displacements.
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APPENDIX: SUMMARY OF ABBREVIATED PARAMETERS

Stiffness (1b/in)

Flexural rigidity (1b-in)

Mixed parameters
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Displacement (in)
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